12 research outputs found

    Détection et suivi d'objets mobiles perçus depuis un capteur visuel embarqué

    Get PDF
    Cette thèse traite de la détection et du suivi d'objets mobiles dans un environnement dynamique, en utilisant une caméra embarquée sur un robot mobile. Ce sujet représente encore un défi important car on exploite uniquement la vision mono-caméra pour le résoudre. Nous devons détecter les objets mobiles dans la scène par une analyse de leurs déplacements apparents dans les images, en excluant le mouvement propre de la caméra. Dans une première étape, nous proposons une analyse spatio-temporelle de la séquence d'images, sur la base du flot optique épars. La méthode de clustering a contrario permet le groupement des points dynamiques, sans information a priori sur le nombre de groupes à former et sans réglage de paramètres. La réussite de cette méthode réside dans une accumulation suffisante des données pour bien caractériser la position et la vitesse des points. Nous appelons temps de pistage, le temps nécessaire pour acquérir les images analysées pour bien caractériser les points. Nous avons développé une carte probabiliste afin de trouver les zones dans l'image qui ont les probabilités la plus grandes de contenir un objet mobile. Cette carte permet la sélection active de nouveaux points près des régions détectées précédemment en permettant d'élargir la taille de ces régions. Dans la deuxième étape nous mettons en oeuvre une approche itérative pour exécuter détection, clustering et suivi sur des séquences d'images acquises depuis une caméra fixe en intérieur et en extérieur. Un objet est représenté par un contour actif qui est mis à jour de sorte que le modèle initial reste à l'intérieur du contour. Finalement nous présentons des résultats expérimentaux sur des images acquises depuis une caméra embarquée sur un robot mobile se déplaçant dans un environnement extérieur avec des objets mobiles rigides et non rigides. Nous montrons que la méthode est utilisable pour détecter des obstacles pendant la navigation dans un environnement inconnu a priori, d'abord pour des faibles vitesses, puis pour des vitesses plus réalistes après compensation du mouvement propre du robot dans les images.This dissertation concerns the detection and the tracking of mobile objets in a dynamic environment, using a camera embedded on a mobile robot. It is an important challenge because only a single camera is used to solve the problem.We must detect mobile objects in the scene, analyzing their apparent motions on images, excluding the motion caused by the ego-motion of the camera. First it is proposed a spatio-remporal analysis of the image sequence based on the sparse optical flow. The a contrario clustering method provides the grouping of dynamic points, without using a priori information and without parameter tuning. This method success is based on the accretion of sufficient information on positions and velocities of these points. We call tracking time, the time required in order to acquire images analyzed to provide the points characterization. A probabilistic map is built in order to find image areas with the higher probabilities to find a mobile objet; this map allows an active selection of new points close the previously detected mobile regions, making larger these regions. In a second step, it is proposed an iterative approach to perform the detection-clustering-tracking process on image sequences acquired from a fixed camera for indoor or outdoor applications. An object is described by an active contour, updated so that the initial object model remains inside the contour. Finally it is presented experimental results obtained on images acquired from a camera embedded on a mobile robot navigating in outdoor environments with rigid or non rigid mobile objects ; it is shown that the method works to detect obstacles during the navigation in a priori unknown environments, first with a weak speed, then with more a realistic speed, compensating the robot ego-motion in images

    Occupancy Map Construction for Indoor Robot Navigation

    Get PDF
    Robot mobile navigation is a hard task that requires, essentially, avoiding static and dynamic objects. This chapter presents a strategy for constructing an occupancy map by proposing a probabilistic model of an ultrasonic sensor, during robot indoor navigation. A local map is initially constructed using the ultrasonic sensor mounted in the front of the robot. This map provides the position of the nearest obstacles in the scene useful for achieving the reactive navigation. The encoders allow computing the robot location in the initial local map. A first path for robot navigation based on the initial local map is estimated using the potential field strategy. As soon as the robot starts its trajectory in real indoor environments with obstacles, the sensor continuously detects and updates the occupancy map by the logsig strategy. A Gaussian function is used for modelling the ultrasonic sensor with the aim of reaching higher precision of the distance measured for each obstacle in the scene. Experiments on detecting, mapping and avoiding obstacles are performed using the mobile robotic platform DaNI 2.0 and the VxWorks system. The resulted occupancy grid is analysed and discussed at the end of this document

    Design and Implementation of a Demonstrative Palletizer Robot with Navigation for Educational Purposes

    Get PDF
    Nowadays, many kinds of robots are used in industries to help in manufacturing or placing objects. However, teaching young people and children about robot design and work can be difficult, turning this into a complicated area for them. This chapter provides a detailed description of the design and implementation of a robotic arm mounted on a mobile robot using the LEGO Mindstorms NXT kit® and the starter kit DaNI 2.0, designed by National Instruments®. The mobile palletizer robot takes a box from place A and navigates in the indoor environment until it reaches a predefined place B. The characterization of the robotic arm is based on a parallel structure considering that the end-effector has only two points to hold the object; the gripper is also built using LEGO®. The robot performs the path computed using an A-star algorithm; moreover, actions like moving up and down, opening and closing the gripper and picking up the box and putting it down are executed by the robotic arm using the central unit of the NXT kit. Each stage of the robot design and implementation is explained in detail using diagrams and 3D graphical views with the aim of illustrating the implementation step by step for educational purposes (mainly for young people or children)

    Control de acceso usando FPGA y RFID

    Get PDF
    Este trabajo presenta el diseño e implementación de un sistema de control de acceso mediante Identificación por Radiofrecuencia (RFID, Radio Frequency Identification) controlado por una Matriz de compuertas programables (FPGA, Field Programmable Gate Array). El sistema está constituido por un par de dispositivos de adquisición de radiofrecuencia, una FPGA, un juego de etiquetas y tarjetas pasivas de identificación. Mediante una interfaz gráfica de usuario es posible controlar todo movimiento dentro de una zona determinada, desde los accesos hasta la disponibilidad de equipo; utilizando los dispositivos de adquisición de radiofrecuencia se puede acceder a la información de los usuarios autorizados, así como al control del equipo. Con este sistema es posible monitorear, administrar y reportar todo acceso de personal, movimiento de equipo o plagio de manera eficiente y evitando un gran número de errores humanos.  </p

    Détection et suivi d'objets mobiles perçus depuis un capteur visuel embarqué

    Get PDF
    This dissertation concerns the detection and the tracking of mobile objets in a dynamic environment, using a camera embedded on a mobile robot. It is an important challenge because only a single camera is used to solve the problem.We must detect mobile objects in the scene, analyzing their apparent motions on images, excluding the motion caused by the ego-motion of the camera. First it is proposed a spatio-remporal analysis of the image sequence based on the sparse optical flow. The a contrario clustering method provides the grouping of dynamic points, without using a priori information and without parameter tuning. This method success is based on the accretion of sufficient information on positions and velocities of these points. We call tracking time, the time required in order to acquire images analyzed to provide the points characterization. A probabilistic map is built in order to find image areas with the higher probabilities to find a mobile objet ; this map allows an active selection of new points close the previously detected mobile regions, making larger these regions. In a second step, it is proposed an iterative approach to perform the detection-clustering-tracking process on image sequences acquired from a fixed camera for indoor or outdoor applications. An object is described by an active contour, updated so that the initial object model remains inside the contour. Finally it is presented experimental results obtained on images acquired from a camera embedded on a mobile robot navigating in outdoor environments with rigid or non rigid mobile objects ; it is shown that the method works to detect obstacles during the navigation in a priori unknown environments, first with a weak speed, then with more a realistic speed, compensating the robot ego-motion in images.Cette thèse traite de la détection et du suivi d'objets mobiles dans un environnement dynamique, en utilisant une caméra embarquée sur un robot mobile. Ce sujet représente encore un défi important car on exploite uniquement la vision mono-caméra pour le résoudre. Nous devons détecter les objets mobiles dans la scène par une analyse de leurs déplacements apparents dans les images, en excluant le mouvement propre de la caméra. Dans une première étape, nous proposons une analyse spatio-temporelle de la séquence d'images, sur la base du flot optique épars. La méthode de clustering a contrario permet le groupement des points dynamiques, sans information a priori sur le nombre de groupes à former et sans réglage de paramètres. La réussite de cette méthode réside dans une accumulation suffisante des données pour bien caractériser la position et la vitesse des points. Nous appelons temps de pistage, le temps nécessaire pour acquérir les images analysées pour bien caractériser les points. Nous avons développé une carte probabiliste afin de trouver les zones dans l'image qui ont les probabilités la plus grandes de contenir un objet mobile. Cette carte permet la sélection active de nouveaux points près des régions détectées précédemment en permettant d'élargir la taille de ces régions. Dans la deuxième étape nous mettons en oeuvre une approche itérative pour exécuter détection, clustering et suivi sur des séquences d'images acquises depuis une caméra fixe en intérieur et en extérieur. Un objet est représenté par un contour actif qui est mis à jour de sorte que le modèle initial reste à l'intérieur du contour. Finalement nous présentons des résultats expérimentaux sur des images acquises depuis une caméra embarquée sur un robot mobile se déplaçant dans un environnement extérieur avec des objets mobiles rigides et nonrigides. Nous montrons que la méthode est utilisable pour détecter des obstacles pendant la navigation dans un environnement inconnu a priori, d'abord pour des faibles vitesses, puis pour des vitesses plus réalistes après compensation du mouvement propre du robot dans les images

    Complex Color Space Segmentation to Classify Objects in Urban Environments

    No full text
    Color image segmentation divides the image into areas that represent different objects and focus points. One of the biggest problems in color image segmentation is the lack of homogeneity in the color of real urban images, which generates areas of over-segmentation when traditional color segmentation techniques are used. This article describes an approach to detecting and classifying objects in urban environments based on a new chromatic segmentation to locate focus points. Based on components a and b on the CIELab space, we define a chromatic map on the complex space to determine the highest threshold values by comparing neighboring blocks and thus divide various areas of the image automatically. Even though thresholds can result in broad segmentation areas, they suffice to locate centroids of patches on the color image that are then classified using a convolutional neural network (CNN). Thus, this broadly segmented image helps to crop only outlying areas instead of classifying the entire image. The CNN is trained to use six classes based on the patches drawn from the database of reference images from urban environments. Experimental results show a high score for classification accuracy that confirms the contribution of this segmentation approach

    Stokes Dynamic Polarimeter for Non-Organic and Organic Samples Characterization

    No full text
    The light polarization properties provide relevant information about linear–optical media quality and condition. The Stokes–Mueller formalism is commonly used to represent the polarization properties of the incident light over sample tests. Currently, different Stokes Polarimeters are mainly defined by resolution, acquisition rate, and light to carry out accurate and fast measurements. This work presents the implementation of an automatic Stokes dynamic polarimeter to characterize non-biological and biological material samples. The proposed system is configured to work in the He-Ne laser beam’s reflection or transmission mode to calculate the Mueller matrix. The instrumentation stage includes two asynchronous photoelastic modulators, two nano-stepper motors, and an acquisition data card at 2% of accuracy. The Mueller matrix is numerically calculated by software using the 36 measures method without requiring image processing. Experiments show the efficiency of the proposed optical array to calculate the Mueller matrix in reflection and transmission mode for different samples. The mean squared error is calculated for each element of the obtained matrix using referenced values of the air and a mirror. A comparison with similar works in the literature validates the proposed optical array

    Contrast and Homogeneity Feature Analysis for Classifying Tremor Levels in Parkinson’s Disease Patients

    No full text
    Early detection of different levels of tremors helps to obtain a more accurate diagnosis of Parkinson&#8217;s disease and to increase the therapy options for a better quality of life for patients. This work proposes a non-invasive strategy to measure the severity of tremors with the aim of diagnosing one of the first three levels of Parkinson&#8217;s disease by the Unified Parkinson&#8217;s Disease Rating Scale (UPDRS). A tremor being an involuntary motion that mainly appears in the hands; the dataset is acquired using a leap motion controller that measures 3D coordinates of each finger and the palmar region. Texture features are computed using sum and difference of histograms (SDH) to characterize the dataset, varying the window size; however, only the most fundamental elements are used in the classification stage. A machine learning classifier provides the final classification results of the tremor level. The effectiveness of our approach is obtained by a set of performance metrics, which are also used to show a comparison between different proposed designs

    Short-Circuit Damage Diagnosis in Transformer Windings Using Quaternions: Severity Assessment through Current and Vibration Signals

    No full text
    Short circuits occurring between turns within the windings are widely known as one of the primary causes of damage in electrical transformers; as a result, early detection plays a fundamental role in preventing further and more serious damage. This study introduces a novel approach that relies on the analysis of current and vibration signals, specifically employing the analysis of quaternion signals, to effectively detect short circuits within electrical transformers., offering an identification of conditions ranging from a healthy state to six levels of short circuit turns. in a no-load transformer, i.e., 0, 5, 10, 15, 20, 25 and 30 SCT. This proposed method employs quaternion rotation to extract statistical features that can be used to classify the condition of the transformer. To evaluate the effectiveness of the proposed methodology, an experimental validation is carried out using a 1.5 kVA transformer, comparing its performance against other existing methods. The results demonstrate the feasibility of the proposal, accurately identifying various levels of SCT, achieving an accuracy of 97.5%, using only 100 samples with the k nearest neighbors method
    corecore